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Understanding anthropogenic impacts
on zoogeochemistry is essential for ecological restoration
Andrew J. Abraham1,2 , Ethan Duvall3 , Kristy Ferraro4 , Andrea B. Webster5 ,
Christopher E. Doughty1 , Elizabeth le Roux5,6,7 , Diego Ellis-Soto8

Ecological restoration is critical for climate and biodiversity resilience over the coming century. Today, there is strong evidence
that wildlife can significantly influence the distribution and stoichiometry of elements across landscapes, with subsequent
impacts on the composition and functioning of ecosystems. Consequently, any anthropogenic activity that modifies this impor-
tant aspect of zoogeochemistry, such as changes to animal community composition, diet, or movement patterns, may support or
hinder restoration goals. It is therefore imperative that the zoogeochemical effects of such anthropogenic modifications are
quantified andmapped at high spatiotemporal resolutions to help inform restoration strategies. Here, we first discuss pathways
through which human activities shape wildlife-mediated elemental landscapes and outline why current frameworks are
inadequate to characterize these processes. We then suggest improvements required to comprehensively model, validate, and mon-
itor element recycling and redistribution by wildlife under differing wildlife management scenarios and discuss how this might be
implemented in practice through a specific example in the southern Kalahari Desert. With robust ecological forecasting, zoogeo-
chemical impacts of wildlife can thus be used to support ecological restoration and nature-based solutions to climate change. If
ignored in the restoration process, the effects of wildlife on elemental landscapes may delay, or even prevent, restoration success.
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Implications for Practice

• Wildlife plays a key role in recycling and redistributing
nutrients and pollutants across landscapes, but human activ-
ities canmodify these important zoogeochemical processes.

• Current modeling frameworks are inadequate to charac-
terize anthropogenic impacts on zoogeochemistry in res-
toration projects. Improved models are needed, which
resolve individual-scale idiosyncrasies, dynamic feed-
backs, multi-element interactions, and integration with
other ecological processes.

• Emerging viewpoints and technologies offer exciting
opportunities to quantify and monitor element distributions
and stoichiometries bywildlife atfine spatiotemporal scales.

• Together, advancements outlined here can help align wild-
life management decisions to support restoration attempts
inways that aremore effective, efficient, ethical, and natural.

Introduction

Terrestrial wildlife modulates carbon (C) and other element
cycles through myriad pathways, referred to as zoogeochemical
processes (sensu Schmitz et al. 2018). For example, animals can
directly accelerate and decelerate biogeochemical cycles by

altering the quantity and quality of resource flows to the soil
pool via consumption, digestion, defecation, and urination
(Hobbs 1996; Schrama et al. 2013). Similarly, animals can indi-
rectly modulate element cycles by changing abiotic and micro-
bial drivers, such as through altered fire regimes and soil
compaction (Schrama et al. 2013; Schmitz et al. 2018). This
ability of wildlife to mobilize key nutrients, as well as harmful
pollutants, has been shown to influence many ecosystem
processes including plant productivity, carbon storage, and
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community structure (McInturf et al. 2019; Subalusky &
Post 2019; Ferraro et al. 2022). As a result, wild animals are
increasingly recognized for their many zoogeochemical impacts
and as potentially important agents within nature-based solu-
tions to climate change (Malhi et al. 2022).

Recently, the United Nations issued a rallying call for the
revival of ecosystems throughout the world as part of its Decade
on Ecosystem Restoration, providing opportunities for large-
scale ecosystem restoration (Svenning 2020). However,
whether the zoogeochemical impact of restored wildlife popula-
tions facilitates or impedes restoration goals is dependent upon
local abiotic conditions, ecological context, and management
actions (Fig. 1). To date, wildlife restoration has been subject
to significant comment and debate, which far outstrips scientific
research (Lorimer et al. 2015). It is essential that future conser-
vation practice is instead underpinned by robust scientific evi-
dence, including the zoogeochemical impacts of wildlife
communities. Here, we argue that particular attention must be
paid to the role of human activities in altering the zoogeochem-
istry of nutrient and pollutant cycles in restoration projects.
Human activities can modify zoogeochemical processes in a
multitude of ways. For example, in oligotrophic landscapes
where animal movement is restricted, wildlife managers often
maintain wildlife health by providing supplementary resources
(Murray et al. 2016), thereby augmenting wildlife diets, popula-
tion densities, and concomitant impacts on ecosystem fertility
and stoichiometry. By contrast, in eutrophic landscapes, issues
relating to excessive nutrient loading and stoichiometric imbal-
ances preside. In this case, wildlife may thwart restoration
attempts by importing elements from eutrophic surrounding
landscapes such as crop fields and water sources (Post
et al. 1998; Abbas et al. 2012). Given the myriad ecological
impacts of elemental recycling and redistribution by animals
(Subalusky & Post 2019), it is imperative that this aspect of zoo-
geochemistry is accurately quantified and mapped at high

spatiotemporal resolutions during ecological restoration projects
(Ellis-Soto et al. 2021).

In this article, we first outline various ways in which human
activities disrupt element recycling and redistribution by wild-
life. We then explain why current frameworks that attempt to
characterize these processes are inadequate to inform restoration
projects, and suggest necessary improvements to comprehen-
sively model, validate, and monitor zoogeochemistry across
multiple trophic levels (soils, plants, animals). While we focus
on the role of animals in directly recycling and redistributing
elements across landscapes via their excreta and carcasses
(Doughty et al. 2016; le Roux et al. 2020; Villar et al. 2021),
we recognize that wildlife has many additional indirect effects
on biogeochemical cycles, including through ecosystem engi-
neering, trampling, and seed dispersal (see Bello et al. 2015;
Schmitz et al. 2018; Malhi et al. 2022). Further, while most zoo-
geochemical research to date focuses on limiting nutrients
(e.g. nitrogen [N], phosphorus [P]), we extend our review to
include pollutants (e.g. arsenic [As], lead [Pb]), as either can
critically reshape the composition and function of ecosystems
(Schlesinger & Bernhardt 2013; Kraus et al. 2020).

With robust scientific forecasting, wildlife can thus be used to
support ecological restoration and nature-based solutions to cli-
mate change (Fig. 1). If ignored in the restoration process, the
effects of wildlife on elemental landscapes may delay, or even
prevent, restoration success

Anthropogenic Impacts on ElementRedistribution and
Stoichiometry by Wildlife

Human activities can substantially alter zoogeochemical pro-
cesses through direct impacts on wildlife or changes to their
environment, notably through changes to (1) wildlife commu-
nity size and composition; (2) element geographies, stoichiome-
tries, and wildlife intake; and (3) wildlife movement and activity
patterns (Fig. 1). There is, however, significant synergy and
feedback between these pathways, which can result in complex
outcomes for landscape element distribution and stoichiome-
try (Fig. 2).

Wildlife Community Size and Composition

Direct human actions such as hunting, species introductions,
habitat degradation, forestry and the management of livestock,
and zoonotic diseases have profoundly reshaped the composi-
tion and abundance of animal communities throughout the
world. In particular, large vertebrates have been prone to extinc-
tions and range contractions due to their low population densi-
ties, slow reproductive rates, and increased likelihood of
human-wildlife conflict (Dirzo et al. 2014). Critically, because
of their greater mobility and longer gut passage times, this group
is also considered disproportionately important for lateral ele-
ment transport and have previously been referred to as the
planet’s “nutrient arteries” (Wolf et al. 2013). Today, wild verte-
brate biomass has been severely reduced and is now dwarfed
18:1 by human biomass and their domestics (Bar-On
et al. 2018). As a result, global nutrient transport by wild

Figure 1. Schematic diagram showing how abiotic conditions (e.g. climate,
geology, etc.) and management actions influence elemental recycling and
redistribution by wildlife, which can support or hinder restoration processes.
Feedback processes are highlighted with dashed lines.
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vertebrates may be less than 10% today compared to the late-
Pleistocene (Doughty et al. 2016). Other key wildlife guilds,
including reptiles, fish, and arthropods, have similarly been
affected by human actions such as climate change, habitat loss,
erection of physical barriers, and pollution (Twining et al.
2017; S�anchez-Bayo & Wyckhuys 2019).

Anthropogenic changes to wildlife composition and abun-
dance can also reshape ecosystem stoichiometry. Selective
absorption and retention of required elements from an animal’s
diet affects the element ratios in the subsidies that are subse-
quently deposited (carcasses and excreta), modifying the stoi-
chiometry of the ecosystems into which they enter. Different
wildlife groups can therefore modify ecosystem stoichiometry
differently. For example, stoichiometric differences in the diet
of large vertebrate browsers and grazers lead to stoichiometric
differences in their resource subsidies (feces), which can ulti-
mately influence competitive advantages between N2-fixing
trees and grasses (Sitters & Olde Venterink 2021). Similarly,
differences in the fecal stoichiometry of piscivorous and her-
bivorous birds have shown to differentially stimulate phyto-
plankton growth in freshwater systems (Petkuviene
et al. 2019), while greater demands for P and calcium
(Ca) to support larger bone structures may also modify
resource subsidies by larger animals (le Roux et al. 2020).

Together, any human actions that selectively extirpate,
reduce, or promote certain species, can therefore critically
reshape the chemistry of an ecosystem. This has important
implications for restoration projects, where management deci-
sions often involve eradication, population management, or
reintroductions. For example, megaherbivores and large

carnivores play an important role in zoogeochemistry (le Roux
et al. 2018; Monk & Schmitz, 2022), but these trophic groups
face substantial restoration challenges (Lorimer et al. 2015).

Element Geographies, Ecological Stoichiometries, and Wildlife
Intake

Human activities can directly influence the distribution and
availability of nutrients and pollutants to wildlife via many
pathways, including agricultural fertilization, supplemental
provisioning, resource extraction, pollution, modified diet selec-
tion, and altered abiotic fluxes such as atmospheric deposition
and hydrological cycles (Birnie-Gauvin et al. 2017; Murray
et al. 2016; Kraus et al. 2020). There are few landscapes today
where human activities have not substantially influenced
elemental distribution and stoichiometry (Schlesinger &
Bernhardt 2013; Kraus et al. 2020). Accordingly, the quantity
and stoichiometric ratio of elements ingested by wildlife is often
substantially modified by humans, leading to changes in zoo-
geochemistry. For example, Abbas et al. (2012) demonstrated
that by feeding on and redistributing nutrients from fertilized
agricultural fields, roe deer (Capreolus capreolus) markedly
alter the N and P budgets of nearby forests in Europe. Similarly,
Post et al. (1998) showed that geese (Chen caerulescens and
Chen rossii) feeding in agricultural areas supplies 40% of the
N and 75% of the P entering nearby wetlands and that changes
in local crop management can drastically alter the magnitude
of these fluxes.

Human activities have also reshaped the distribution of and
exposure to pollutants for wildlife. Sites of high pollutant

Figure 2. Anthropogenic effects on the zoogeochemistry of nutrient and pollutant cycles. Colored lines represent direct links between human activities and
animal community composition (blue), intake (gray), and movement (orange), which synergistically impact the distribution and stoichiometry of elements across
restoration landscapes. Photos taken by A. Abraham and S. Abraham.
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concentration, such as landfills or mines, may nevertheless
attract wildlife due to the availability of other resources (Sach
et al. 2020). Consequently, animals can play an important role
in transporting pollutants such as heavy metals into restoration
sites. For example, Martín-Vélez et al. (2021) recently quanti-
fied the transport of several metal elements including As, Pb,
and copper (Co) by lesser black-backed gulls (Larus fuscus)
from mining and landfill sites into a Ramsar wetland conserva-
tion site in Spain. Such long-term deposition of heavy metals
(e.g. 77 g Pb ha�1 yr�1) may compromise aquatic communities
and ecological processes at this site. Similarly, elevated concen-
tration of pollutants in elephant (Loxodonta africana) feces near
mining sites suggests they play an important role in distributing
heavy metals in South Africa (Sach et al. 2020). Animals in
higher-trophic levels, such as predators and scavengers, are
important vectors of pollutants due to the bioaccumulation of
these elements in their bodies and excreta (Webster et al.
2021a). Further research is required to determine the contribu-
tion of lower-trophic organisms, including invertebrates
(Monchanin et al. 2021).

Critically, any anthropogenic modification to wildlife
element intake has important implications for animal digestive
physiology, health, and reproduction (Birnie-Gauvin et al.
2017), which generates dynamic feedbacks between wildlife
community composition, abundance, and the elemental land-
scape (see section “Wildlife Community Size andComposition”).
For an in-depth discussion on this topic we refer readers to the
comprehensive review of wildlife nutrition in a changing world
by Birnie-Gauvin et al. (2017).

Wildlife Movement and Activity Patterns

Human activities impact wildlife movement in many ways.
Here, we define four broad categories.

(1) Physical and disruptive barriers: static human infrastructure
such as fences, roads, towns, and dams directly reduce ani-
mal movement, increase habitat fragmentation, and reduce
ecosystem connectivity (Jakes et al. 2018). Even where
physical barriers do not exist, disruptive linear features in
the landscape, such as roads, have been shown to reduce
animal home-range size (Seigle-Ferrand et al. 2022). Where
animals congregate in large numbers, C storage and N fixa-
tion can be impeded (Veldhuis et al. 2019b). Currently,
many restoration projects restore isolated pockets of habitat
without restoring connectivity. Although this is often
unavoidable, restoration practitioners should be aware that
impeded element flows resulting from physical and disrup-
tive barriers may compromise restoration success.

(2) Spatial and temporal distribution of resources: anthropo-
genic nutrient hotspots or hot moments (pulses of nutrients
into an environment; sensu McClain et al. 2003) can gener-
ate patterns of directional wildlife movement toward, and con-
centration around, resources such as waterholes, landfills,
compost facilities, bird feeders, or supplemental mineral
blocks (Murray et al. 2016; Birnie-Gauvin et al. 2017). Simi-
larly, anthropogenic depletion of resources or toxification of

an environment with pollutants can shape movement patterns
directionally away from ecosystems, with concomitant
impacts for zoogeochemistry (Young et al. 2010). As wildlife
subsequently influences elemental distribution and stoichiom-
etries themselves, feedback patterns may also emerge
(McInturf et al. 2019).

(3) Landscapes of fear: human disturbances strongly shape ani-
mal use of space and movement dynamics. For example,
many species reduce their movement by more than 50% in
areas with a high human footprint (Tucker et al. 2018).
Fear toward humans may lead large predators to become
more nocturnal and perform more energetically costly move-
ments to avoid humans across landscapes (Gaynor
et al. 2018). Likewise, access to concentrated mineral
resources by herbivores is diminished where there is a per-
ceived increase in vulnerability to hunting (Blake et al.
2013). Humans also exert a strong control on natural land-
scapes of fear via predator management. Where present, nat-
ural predators may generate spatial element heterogeneity in
landscapes via the distribution of carcasses (Bump
et al. 2009) and important non-consumptive effects on prey
such as habitat selection and activity times (Veldhuis
et al. 2020; Monk & Schmitz, 2022), although megaherbi-
vores may escape these pressures (le Roux et al. 2018). As
such, if size-dependent differences in elemental demand lead
to variations in zoogeochemical impact (see section “Wildlife
Community Size and Composition”), the differential
response of prey species to predation will create further
chemical heterogeneity. Consequently, whether a restoration
project chooses to restore carnivores may have far-reaching
consequences to element distribution and stoichiometry.

(4) Climate change, habitat fragmentation, and habitat loss:
anthropogenic climate change is driving a geographical
redistribution of plants and animals globally (Pecl
et al. 2017). Similarly, habitat loss and fragmentation mod-
ify animal movement (Hadley & Betts 2009) and thereby
wildlife impacts on biogeochemistry. Animals that under-
take long migrations (Wilcove & Wikelski 2008) or are
water-dependent (Veldhuis et al. 2019a) are particularly
vulnerable to these anthropogenic forces, threatening their
roles as important vectors of allochthonous nutrients into
ecosystems (Childress et al. 2014).

The above anthropogenic factors can be static (e.g. road infra-
structure) or dynamic (e.g. seasonal provision of supplementary
resources). Animals have been shown to exhibit a high degree of
behavioral flexibility with changing circumstances. This is well
exemplified by the responses of wildlife communities through-
out the world to COVID-19-induced lockdowns (Bates
et al. 2021). Consequently, predicting how anthropogenic fac-
tors shape zoogeochemical processes during restoration projects
is complex, whereby different factors may enhance or oppose
each other (Fig. 2). In Box 1, we provide an example of how dif-
ferent wildlife management strategies may interact to potentially
influence wildlife-mediated impacts on landscape element dis-
tribution and stoichiometry in a restoration site located in the
southern Kalahari Desert, South Africa.
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Box 1 Future modeling, validation, and monitoring of anthropogenic impacts on zoogeochemistry at Tswalu Kalahari
Reserve

Tswalu Kalahari Reserve (TKR; 120,000 ha) is a 25-year ecological restoration project in the southern Kalahari Desert,
South Africa (https://tswalu.com/tswalu-foundation). TKR was previously farmland, but now has a full complement of large verte-
brate herbivores, predators, and scavengers native to the region. The goal of TKR is to (1) restore the natural environment; (2) re-
establish and protect biodiversity; and (3) maintain the Kalahari’s characteristic ecological processes. As a nutrient-poor, arid envi-
ronment (mean annual precipitation is approximately 300 mm/year), wildlife plays a critical role in recycling and redistributing
nutrients within the reserve. For example, sociable weavers (Philetairus socius) and brown hyaenas (Parahyaena brunnea) have
been shown to create “islands of fertility” at their nest and latrine sites in TKR, respectively (Prayag et al. 2020; Abraham
et al. 2022b), with implications for tree growth and animal activity (Prayag et al. 2020; Lowney & Thomson 2022). Consequently,
any modification to these or other zoogeochemical processes by TKRwildlife management may impact the attainment of restoration
goals.

Possible anthropogenic influences on zoogeochemistry at TKR
(1) Electrified fences: TKR is fenced to reduce disease transmission and human-wildlife conflict. However, this prevents large-

scale animal migrations in response to nutrient shortage. An internal fence further splits TKR into two separate sections.
(2) Offsite wildlife removals: to prevent overgrazing, large vertebrate herbivores are periodically removed from TKR, with con-

comitant loss of nutrients in their bodies (Abraham et al. 2021b). For some elements (e.g. P), this loss may be more than
50% of abiotic inputs.

(3) Mineral lick provision: to offset nutritional deficits, wildlife managers provide supplementary minerals (P, Ca, K, Mg; approx-
imately 25,000 kg/year) and salt (Na; approximately 10,000 kg/year) at approximately 25 point sources distributed throughout
TKR. Camera trap studies highlight that larger herbivores disproportionately access these mineral resources and inter-species
dynamics are modified at these sites (unpublished data).

(4) Landscapes of fear: large carnivore guilds are managed differently between the two sections of TKR, maintaining lion
(Panthera leo) presence in one section, and spotted hyaena (Crocuta crocuta), cheetah (Acinonyx jubatus), and African wild
dog (Lycaon pictus) presence in the other. Different predators have been shown to elicit different responses in prey behavior
at TKR (Makin et al. 2018) and may shift herbivore community composition toward predominantly larger-bodied species
(le Roux et al. 2019) with cascading impacts on mineral demand.

(5) Airstrip: TKR has a private airstrip to facilitate guest transport and helicopter flights. However, heavy metal deposition
(Webster et al. 2021b) and noise pollution (Alquezar & Macedo 2019) near the airstrip may alter wildlife element intake and
movement patterns and therefore element intake and redistribution.

(6) Tourism and security: although tourist density in TKR is relatively low, road networks and vehicle disturbance canmodify wild-
life movement patterns and habitat use due to landscapes of fear, with subsequent impacts for nutrient redistribution (Shannon
et al. 2017).

Modeling zoogeochemistry at TKR
The above human activities and infrastructure may exert an important collective influence on element recycling and redistribu-

tion by large vertebrate fauna at TKR (Fig. 3). Zoogeochemical modeling offers the opportunity to quantify andmap how such static
and dynamic anthropogenic modifications change the chemical landscape of TKR over coming decades. Where modeled outcomes
negatively impact restoration processes, management strategies can be realigned or management actions designed to counteract the
impact can be implemented. Some required data to model zoogeochemistry can be obtained using remote sensing (e.g. digital ele-
vation model at 30-m resolution for physical land structure).

However, many datasets must be collected in situ. TKR already collects many important data to help inform management deci-
sions, including precipitation (approximately 40 rainfall gauges across the reserve), large herbivore (>10 kg) abundance, and habitat
mapping (Tokura et al. 2018). Additional datasets particularly required to facilitate robust zoogeochemical modeling include:

(1) current element distribution and stoichiometry;
(2) estimates of major abiotic fluxes for focal elements;
(3) presence of potential organic/synthetic pollutants;
(4) wildlife diets and movement patterns;
(5) fecal and urine concentration measurements; and
(6) annual management reports.

To facilitate the efficient transfer of data and knowledge from conservation practitioners to ecosystem modelers, wildlife man-
agers should prepare and format all data for analysis and integration with models. Biologists and environmental scientists can then
generate robust biogeochemical forecasts, for communication back to key stakeholder groups (Fig. 4).

Continued
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Current Frameworks to Model Animal Element
Redistribution

There are numerous studies examiningwildlife-mediated element
redistribution. However, most of these focus on just one or two
idiosyncratic animal species (Subalusky & Post 2019; Abraham
et al. 2022a) and few explicitly explore anthropogenic influences
on element redistribution (but see Post et al. 1998; Abbas
et al. 2012; Martín-Vélez et al. 2021). While the choice of these
species is usually driven by unique characteristics particularly

pertinent to the transport or recycling of elements (e.g. high con-
sumption rates or long gut passage times), the collective impacts
of all animals must be evaluated in order to understand the collec-
tive zoogeochemical role played by wildlife in ecological restora-
tion projects. Inherently, attempts to model element redistribution
by all animals within an ecosystem are more complex and there
remains a paucity of studies that attempt to do so.

Current models used to estimate this zoogeochemical process
by diverse animal communities are often based on differential

Box 1 Future modeling, validation, and monitoring of anthropogenic impacts on zoogeochemistry at Tswalu Kalahari
Reserve—cont’d

Validation and monitoring of zoogeochemistry at TKR
Model forecasts are imperfect and must be rigorously validated before being used to help inform wildlife decision making. Sim-

ilarly, monitoring frameworks should be put in place to observe the impacts of changing landscape chemistry over time, with col-
lected data used to iteratively improve model performance and provide confidence in model outputs over time (Fig. 4). These
validation and monitoring data could include, but are not limited to:

(1) element concentrations and ratios in soils, plants, and wildlife excreta;
(2) wildlife body condition;
(3) baseline wildlife exclusion areas;
(4) vegetation surveys (composition and abundance); and
(5) wildlife movement patterns.

Figure 3. The restoration of Tswalu Kalahari Reserve, South Africa, highlighting the reserve landscape (A) and six possible ways in which human activities and
infrastructure impact ecosystem zoogeochemistry via fencing (B), predator management (C), airstrip pollution (D), vehicles and the road network (E), provision
of mineral licks (F), and off-site wildlife removal (G). Photos A–F taken by A. Abraham. Photo G taken by J du P Bothma (University of Pretoria).

Restoration Ecology6 of 13

Zoogeochemistry in ecological restoration



equations that utilize allometric relationships between body
mass and key characteristics such as metabolic rate, population
density, and daily movement to estimate element diffusivity
for each species (Wolf et al. 2013). This diffusivity coefficient

has then been applied to databases of mammal ranges and body
mass to generate spatially explicit maps of past and current ele-
ment transport (e.g. Doughty et al. 2013, 2016). While this suite
of models has allowed us to appreciate the importance of

Figure 4. Six-point workflow for understanding how different restoration options may impact the distribution and stoichiometry of elements throughout a
landscape and how these outcomes can aid in creating successful restoration schemes. Red arrows show how information from initial model outputs and
monitoring efforts can be used to iteratively improve model performance and restoration decision making. Animal silhouettes taken from http://phylopic.org/.
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animals as agents within local and global biogeochemical cycles
in a computationally efficient manner (Schmitz et al. 2018;
Abraham et al. 2022a), there are several shortcomings. These
include issues related to poorly mapped underlying element
distributions (Wolf et al. 2013), a bias toward large vertebrate
herbivores (Doughty et al. 2016), compound effects of using
inaccurate mass-based scaling parameters such as gut passage
time (Abraham et al. 2021a), unrealistic movement strategies
which are approximated to Brownian motion (Wolf et al.
2013), and no feedback between animals and their elemental
environment—an important relationship that drastically impacts
animal movement (McInturf et al. 2019). As a result, precise
estimation of how human activities influence element recycling
and redistribution by animals in any one place is inherently
uncertain, which has precluded the application of these models
for modern-day wildlife and landscape management. Conse-
quently, there have been calls for more sophisticated representa-
tions of zoogeochemistry in ecosystem models (Ellis-Soto
et al. 2021).

Future Modeling Directions

Modeling human influence on element recycling and redistribu-
tion by wildlife requires a meta-ecosystem approach, linking
anthropogenic activities to flows of energy, elements, and
organisms (Loreau et al. 2003). Below we outline three key
areas, whereby improved modeling will facilitate a deeper
understanding of how the zoogeochemical impacts of animal
communities can support or hinder restoration projects.

(1) Element distribution, stoichiometries, and availability: an
understanding of present-day spatial element distribution
in soils and plants is critical for forecasting how wildlife
management decisions may impact zoogeochemistry. Point
field measurements are essential and can be mapped across
landscapes by statistically integrating various drivers of spa-
tial variation. Increasingly, machine learning methods are
applied to the prediction of element distribution at high-
spatial resolution (e.g. 30 m; Hengl et al. 2021). To map
wildlife-mediated impacts on ecosystem stoichiometry, it
is important to represent multiple elements simultaneously.
In this respect, stoichiometric distribution models offer a
framework to spatially resolve suites of elements using field
data (Leroux et al. 2017). Alternatively, analysis of multi- or
hyper-spectral data collected from drones, aircraft, or satel-
lites offers landscape-wide mapping of critical elements
such as N, P, Ca, and magnesium (Mg) with robust accuracy
(r2 = 0.61–0.88; Asner et al. 2017; Thomson et al. 2018).
Current zoogeochemical models do not differentiate
between the availability of discrete elemental resource
stocks for different animal species (e.g. concentration and
stoichiometric differences between C3 and C4 plants).
Yet, this critically determines element intake of different
animal diets, with implications for zoogeochemical pro-
cesses (Balluffi-Fry et al. 2022). Resolving access to differ-
ent element pools for grazers, browsers, frugivores,

insectivores, scavengers, and carnivores is key for future
modeling practices.

(2) Individual-scale processes: resolving important zoogeo-
chemical processes at an individual scale is essential for
robustly modeling the spatiotemporal dynamics of zoogeo-
chemistry in restoration projects. For example, space use
and nutritional requirements vary based on species, age,
sex, reproductive, or lactation status, digestive physiology,
and environmental conditions (Suttle 2010), while individ-
ual memory can further impact movement patterns (Ranc
et al. 2022). Moreover, these characteristics are dynamic
and interactive, triggering feedback patterns that are not eas-
ily captured when modeling population averages (McInturf
et al. 2019). Agent-based models (ABMs) provide one
opportunity to model individuals—in this case, individual
animals—with the ability to perform dynamic decision-
making tasks based on a changing environment. Consequently,
many of the limitations of previous nutrient redistribution
models, such as realistic animal movement and resource
selection, can be overcome. Ferraro et al. (2022) insight-
fully demonstrate the advantages of ABMs for modeling
zoogeochemistry. By tying empirical data of nutrient fluxes
from the literature to animal movement, this model illus-
trated the landscape-level zoogeochemical effects of ani-
mals on the move. Their results indicate not only do large
herbivores increase landscape-level and local-level hetero-
geneity, but also that the heterogeneity created by zoogeo-
chemical effects may be important to sustaining wildlife
populations. Additionally, their model indicates that
previous nutrient budgeting models, which averaged the
impact of an animal over a home range, miss important
nuances in how individuals shape the zoogeochemistry of
a landscape. Somveille and Ellis-Soto (2021) further build
a spatially explicit predictive modeling framework that
accounts for intraspecific variation in migratory behavior
of Galapagos giant tortoises (Chelonoidis porteri) and link
this with long-distance seed dispersal events of invasive
guava fruits across Santa Cruz Island, Galapagos. These
fine-scale spatial predictions may serve as a baseline to esti-
mate the zoogeochemical effects of hundreds of millions of
guava seeds dispersed annually by giant tortoises (Ellis-
Soto et al. 2017). However, both of these models focus on
one species (caribou/giant tortoise) and one propagule
(N/guava seeds). In highly dynamic, biodiverse systems
(e.g. tropical forests), individual-scale effects and idiosyn-
crasies may still “average out” (Doughty et al. 2013). Yet,
we argue that over the spatiotemporal resolution that resto-
ration managers are concerned (meters-kilometers; months-
years), as well as the discrete nature of management actions
(e.g. the reintroduction of specific individuals or the removal
of a fence), these individual-scale nuances will likely remain
important. This is especially the case in high-latitude and arid
systems, where individual contributions have longer-lasting
impacts (Malhi et al. 2022). For example, representing
individual scavengers is key for determining if elements
from carcasses stay in situ (Bump et al. 2009) or are
transported to specific latrines and den sites (Abraham
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et al. 2022b). The capacity of ABMs to provide predictions
of on-the-ground change will also aid in the design of mon-
itoring protocols by highlighting which ecosystem
changes to monitor allowing for more adaptive manage-
ment strategies. Moreover, the bottom-up construction of
ABMs (creating a system from the decisions and interac-
tions of its individual components) makes it a useful
hypothesis-generating tool, allowing scientists to match
their understanding of reality with reality itself. This
occurs by making explicit all the assumptions that under-
lay our understanding of a system, revealing which aspects
of the system, as modeled, are likely to be most influential
and which are likely to interact with each other. However,
ABMs can be computationally expensive, precluding their
utilization at large (e.g. continental) scales. In this case,
ABMs may serve as an intermediary or sub-component
model that elicits key feedbacks within larger models, sim-
ilar to the approach of novel food web models (e.g. Kadoya
et al. 2018). Alternatively, trait-based approaches of modeling
dispersal effects of animal communities within larger general
ecosystem models (e.g. Harfoot et al. 2014; Bello et al. 2015;
Schmitz & Leroux 2020), offer promise.

(3) Key feedbacks and integration with other ecological pro-
cesses: modeling anthropogenic influence on element recy-
cling and redistribution in isolation may lead to incorrect
restoration forecasts due to feedbacks within the ecosystem
(McInturf et al. 2019). Element distribution has reciprocal
relationships with many ecological processes such as
primary productivity and animal activity (McInturf et al.
2019). Feedbacks between these ecological processes may
lead to unintended conservation problems such as occurred
during the classic example of introduced piscivorous fish to
control harmful algal blooms (see DeMelo et al. 1992). For
example, following one of the largest dam removal projects
in history, the Elwha River restoration project in
Washington State, U.S.A., faced many challenges. This
included the consideration of nutrient availability, seed dis-
persal, water retention, and shading for efficient plant
growth of previously inundated riparian habitat. However,
neglecting the impacts of wildlife on restoration processes
overlooked critical ecological interactions and drivers of
restoration progress. For example, ungulates which trans-
port nutrients and seeds from mature forest to restoration
areas ultimately suppressed plant growth through herbivory
(McCaffery et al. 2018). In contrast, the addition of log piles
by managers to protect plants from herbivory provided hab-
itat for birds and other wildlife, thereby initiating a subsidi-
ary nutrient input. Such impacts by animals are instrumental
in driving restoration, but reflect complex trade-offs in man-
agement decisions. It is therefore essential that potentially
important processes such as soil compaction or overgrazing
are either (1) explicitly incorporated in the zoogeochemistry
framework, or (2) that results of element distribution and stoi-
chiometry are coupled with other vegetation, carbon, or bio-
diversity models. For example, to understand how modified
landscape chemistry influences grazing impacts on soil

carbon storage, element distribution, and stoichiometry
results could be coupled with the SNAPGRAZE carbon
dynamics model (Ritchie 2020) for more integrative restora-
tion forecasts.

The above suggestions are certainly not exhaustive. We
encourage researchers to creatively build upon the ideas sug-
gested here to further integrate modeling approaches with
empirical data to refine the forecasting of element distribution
and stoichiometry in restoration projects over time (Fig. 4).

Emerging Viewpoints, Technologies, and Datasets for
Zoogeochemistry

In order to implement many of the above model improvements,
adequate and robust information is needed. Emerging view-
points, technologies, and datasets provide exciting opportunities
for scientists to assemble the diverse data required to parameter-
ize and validate models. For instance, indigenous perspectives
are increasingly being incorporated into effective restoration
and rewilding initiatives (Ban et al. 2018). First, indigenous
knowledge can enhance understanding of past histories of
human–wildlife relationships (Trisos et al. 2021), providing
insights into long-term impacts on zoogeochemistry (Doughty
et al. 2013). Second, traditional ecological knowledge can often
provide accurate assessments of key information such as wild-
life abundance and movement patterns (Braga-Pereira
et al. 2022), which can be used in concert with, or in place of
empirical data. For example, large vertebrate animals, such as
bison (Bison bison), play a crucial role in several indigenous cul-
tures, that have intimate knowledge of their ecology
(Taschereau Mamers 2020).

New technological advancements further improve the ability
of scientists to quantify the impacts of wildlife on chemical
landscapes. These include handheld elemental analyzers such
as X-ray fluorescence that can generate high volumes of field
data, low-cost GPS tracking technologies for measuring animal
movement (Kays et al. 2022), and eddy covariance towers that can
disentangle methane emissions from animals (Stoy et al. 2021).
Importantly, artificial intelligence can now be used to analyze the
vast quantities of data that are generated by new technologies.
For example, the Megadetector computer vision software (Tuia
et al. 2022) can automatically identify animals and humans in cam-
era trap images with high accuracy, reducing human labor and
error. Similarly, advancements in eDNA and DNA barcoding
can be used to track species’ presence and monitor diets across
landscapes and through time (Beng & Corlett 2020).

To monitor the impact of entire populations of wildlife across
larger spatial scales, remote sensing products from drones, air-
planes, and satellites offer unprecedented opportunities. For
example, recently collected Global Ecosystem Dynamics Inves-
tigation LiDAR provides new insights into vegetation structure,
facilitating research into how wildlife use and shape their envi-
ronment at the landscape scale (Burns et al. 2020). Similarly,
the proposed 2024 surface biology and geology mission by the
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National Aeronautics and Space Administration (NASA) aims
to deploy multi- and hyperspectral sensors that will offer
opportunities to assess nutrient concentrations and stoichiome-
try in plants across most of the world at 60-m resolution
(Cawse-Nicholson et al. 2021). This novel data will provide
sub-monthly temporal insights into forage quality available to
wildlife. Coupling these, and other remotely-sensed datasets,
with wildlife occurrence, data can help accurately estimate the
impact of wildlife on nutrient redistribution (sensu Ellis-Soto
et al. 2021).

Ideally, where possible all aspects of zoogeochemical models
should be parameterized using site-specific data. However, logis-
tical and financial difficulties often prevent this. In the absence of
site-specific data, newly published datasets can be leveraged. For
example, Abraham et al. (2021a) collated a wide database on gut
passage time in endotherms (n= 391 species), a critical parameter
to estimate element redistribution by large vertebrate animals.
Similarly, new data repositories allow improved parameterization
of ecosystem composition, while more than 1,000 animal species
are currently being tracked with animal tracking technologies,
offering insights into wildlife space use and movement patterns
(Kays et al. 2022). The volume of such animal movement data
is currently doubling nearly every 2 years (Kays et al. 2022).
Many other databases on plant (e.g. TRY database; Kattge
et al. 2020) and animal functional traits (e.g. EltonTraits; Wilman
et al. 2014) or fecal element concentrations (e.g. Dung Data
Depository with >10,000measurements from 44mammalian her-
bivore species in 10 countries; le Roux et al. unpublished data)
may also be useful.

Implementing and Communicating Zoogeochemistry
for Better Restoration Practices

Within the restoration process, modeling can be used to help
identify the best course of action by simulating possible out-
comes before action is taken (Restoration Actions, Fig. 4). How-
ever, all those involved in the process of imagining, modeling,
and implementing restoration initiatives, must interrogate the
underlying motivations and scope of any specific project, which
can impact decisions made throughout the restoration processes,
including at the modeling stage. By approaching restoration
with clearly stated values and motivations, scientists and man-
agers can create ethical restoration schemes based on sound pol-
icies and effective research (Ferraro et al. 2021; Nelson 2021). It
is also essential that all restoration projects that scientists
develop strong connections between practitioners and conserva-
tion academics to exchange ideas, expertise and leverage exist-
ing datasets to maximize forecasts of potential restoration
outcomes (Pretty & Smith 2004). Modeling for restoration is
improved when all important factors are identified and incorpo-
rated (Data Inputs, Fig. 4), and utilizing existing databases can
help identify important data gaps. Given that models can be
highly tailored to specific systems, conservation practitioners
can help facilitate and improve efforts to effectively resolve zoo-
geochemical processes at their site by collating required datasets
(e.g. see the hypothetical example in Box 1). After the relevant

features are added to a model, the impact of various restoration
decisions can be modeled producing elemental distribution
maps for each potential restoration plan (Elemental Distribution
and Stoichiometry Modeling, Fig. 4).

Ecosystems are complex and ecological forecasting is never
perfect. It is therefore essential that validation monitoring frame-
works are put in place to identify erroneous or over-simplified
assumptions, ensure that model predictions are useful, and to
record verifiable impacts over time (Validation and Monitoring,
Fig. 4). In this process, it is important to ensure that there is col-
lective agreement on what successful zoogeochemical outcomes
look like. For example, keeping animal-vectored pollutant levels
below set thresholds (Martín-Vélez et al. 2021) or maintaining a
certain degree of elemental heterogeneity within the landscape.
There are a plethora of field-based (e.g. wildlife observations, sam-
ple measurement, bioacoustics) and remotely-sensed (e.g satellite)
methods that can be used for validation and monitoring purposes.
These data can be collected by diverse groups including indigenous
people, ecologists, GIS specialists, wildlife managers, and citizen
scientists. Data collected throughout restoration projects can be iter-
atively fed back into the modeling process to improve model fore-
casting (sensu Dietze et al. 2018), and highlight missing dynamics
overlooked in earlier model versions (Data Inputs, Fig. 4). Conse-
quently, the impacts of different wildlife management actions on
element distribution and stoichiometry can be honed over time
and management decisions revaluated and realigned to reach resto-
ration goals (Fig. 1).

The outputs of an iterative modeling effort can help discern
potential restoration implications for each intervention in con-
crete metrics, such as increases or decreases to primary produc-
tivity, or changes in ecosystem composition and dynamics
(Restoration Implications, Fig. 4). Upon completion and valida-
tion of modeling exercises, generated information needs to be
distilled into comprehensible and communicable language for
each stakeholder group (Communication, Fig. 4). There is
exhaustive literature on communicating science to stakeholder
groups that we do not go into here. However, dynamic model
interfaces that illustrate outcomes of different management deci-
sions may be particularly helpful.

Conclusion

Restoration of wildlife is critical for climate and biodiversity
resilience over the coming century (Arias et al. 2021; Malhi
et al. 2022), yet predicting successful schemes and understand-
ing possible ecosystem outcomes is complicated by anthropo-
genic effects. Within restoration projects, wildlife plays a key
zoogeochemical role, which can support or hinder restoration
processes. For stakeholder groups to make informed wildlife
management decisions that account for critical zoogeochemical
processes, improved methodologies are needed that both con-
sider anthropogenic influences and wildlife feedbacks. In this
paper, we outline how zoogeochemical models may be
improved to better forecast the impact of wildlife-mediated ele-
ment recycling and redistribution in restoration projects.
Improved models should consider how management decisions
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affect animal community composition, diet, and behavior to
forecast subsequent impacts on ecosystem stoichiometry and
biogeochemistry. This should include individual-scale pro-
cesses, dynamic feedbacks, multi-element interactions, and inte-
gration with other ecological processes. Emerging viewpoints
and technologies offer exciting opportunities to quantify and
monitor element distributions and stoichiometries at fine spatio-
temporal scales. Together, these advancements can help align
wildlife management decisions to support ethical restoration
attempts in ways that are more effective, efficient, and natural.
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