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Abstract
The stratified nature of tropical forest structure had been noted by early explorers, but until recent
use of satellite-based LiDAR (GEDI, or Global Ecosystems Dynamics Investigation LiDAR), it was
not possible to quantify stratification across all tropical forests. Understanding stratification is
important because by some estimates, a majority of the world’s species inhabit tropical forest
canopies. Stratification can modify vertical microenvironment, and thus can affect a species’
susceptibility to anthropogenic climate change. Here we find that, based on analyzing each GEDI
25 m diameter footprint in tropical forests (after screening for human impact), most footprints
(60%–90%) do not have multiple layers of vegetation. The most common forest structure has a
minimum plant area index (PAI) at∼40 m followed by an increase in PAI until∼15 m followed by
a decline in PAI to the ground layer (described hereafter as a one peak footprint). There are large
geographic patterns to forest structure within the Amazon basin (ranging between 60% and 90%
one peak) and between the Amazon (79± 9% sd) and SE Asia or Africa (72± 14% v 73± 11%).
The number of canopy layers is significantly correlated with tree height (r2 = 0.12) and forest
biomass (r2 = 0.14). Environmental variables such as maximum temperature (Tmax) (r2 = 0.05),
vapor pressure deficit (VPD) (r2 = 0.03) and soil fertility proxies (e.g. total cation exchange
capacity−r2 = 0.01) were also statistically significant but less strongly correlated given the
complex and heterogeneous local structural to regional climatic interactions. Certain boundaries,
like the Pebas Formation and Ecoregions, clearly delineate continental scale structural changes.
More broadly, deviation from more ideal conditions (e.g. lower fertility or higher temperatures)
leads to shorter, less stratified forests with lower biomass.

1. Introduction

Early Western visitors describe tropical forests as horror vacui (nature abhorring a vacuum) since vegetation
was ‘anxious to fill every available space with stems and leaves’, which was a change from more open
temperate forests (Richards 1952). However, a closer examination of tropical forests revealed structure or
stratification with ‘a discernible, though complicated, arrangement in space’ (Richards 1952). Halle et al
(1980) built on this with their influential work identifying 23 unique tree architecture types and delving into
the drivers of forest architecture (Halle et al 1980). They recognized that because tropical forests had fewer
hydraulic or cold temperature constraints, the tropics was a good place to study the potential for trees to fill
vertical space. They developed theories using detailed vertical profiles of 20 by 30 m old growth canopies
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Figure 1. Artistic rendition of a ‘typical’ stratified tropical forest with the forest (left) within a 25 m diameter GEDI pulse and the
expected layered return of the profile (center). Animals in figure show how animals both impact and are impacted by canopy
structure. (right) Flow chart diagram showing our procedure for delineating the profiles. Green dashed line shows how the
example PAVD profile would be classified. Reproduced with permission from Nicholle Fuller.

where ‘trees of the present’ occupy space in the upper canopy as well as in a second layer of increased light at
15–20 m where sunflecks converge. This old growth forest architecture would result in a stratified or layered
forest (artistically rendered in figure 1) unlike younger pioneer forests with a single upper canopy stratum.
We define a stratified or multilayer forest as having two or more peaks (or stratum= higher vegetation
density) in horizontal vegetation (e.g. overstory and midstory in figure 1) with a lower amount of vegetation
between them. Others have quantified stratification in different ways and found both temperate and tropical
forests commonly have 2–3 tree layers or strata (Baker and Wilson 2000). However, tropical forest
stratification has not been addressed previously at high spatial resolutions (e.g. 25 m diameter) at the
pantropical scale.

More recently, the Global Ecosystems Dynamic Investigation (GEDI) on the International Space Station
(ISS)-based LiDAR instrument (Dubayah et al 2020), allows us for the first time to peer into the structure of
tropical forests in unprecedented resolution at a global scale. Prior to GEDI, there were other satellite lidar
instruments (e.g. GLAS on ICESAT-1) used for measuring vegetation structure at large scale (Tang et al 2016,
Tang and Dubayah 2017), but these were lower resolution, much more sparse, and focused on polar regions.
At a more regional scale, aircraft and terrestrial lidar have shown detailed individual tropical forest tree
architectures. For instance, aircraft lidar in tropical Peru found that tree architecture or shape (height of peak
canopy volume (P) divided by canopy height) was highly correlated with canopy height (Asner et al 2014)
and in Panama others successfully predicted the tree size distributions with airborne lidar (Taubert et al
2021). At a global scale, Ehbrecht et al (2021) used terrestrial laser scanning at a larger scale to show that
forest structural complexity is a function of annual precipitation and precipitation seasonality (Ehbrecht et al
2021). Both simulation and sensitivity analysis suggest that high-quality GEDI data is able to provide
measurements of similar accuracy for variables like plant area index (PAI) or species richness in the tropics
when compared to aircraft and terrestrial lidar (Marselis et al 2018, 2020). These different lidar tools (that
inform on structure from the individual tree to global scale) can help us to better understand how vertical
layers are stratified across the tropical forests globally.

Tropical forest structure matters because it is indicative of use by dependent organisms: for example, tall
canopies were a strong predictor of habitat use by Baldfaced saki monkeys (Pithecia irrorata) in the Peruvian
Amazon (Palminteri and Peres 2012) and structure data are increasingly being used in species distribution
models (Burns et al 2020). However, structure is understudied because detailed pan-tropical structural data
did not exist prior to GEDI, and yet it is where the bulk of the world’s species exist (Stork 2018) including
over 75% of all vertebrates and 60% of neotropical mammal species (Kays and Allison 2001). Stratification of
forest vertical layers has been hypothesized to increase rates of pollination and dispersal, optimize light use,
increase inter-canopy CO2 concentrations, reduce leaf, fruit and flower predation, and increase forest
structural integrity (Smith 1973). Overall, structure also creates the habitat for all other forest dwelling
species (Terborgh 1992). For instance, figure one shows animals both impacting and being impacted by
forest structure.

Further, understanding tropical forest structure can give us new insights into forest biomass, which is a
primary goal of GEDI. Currently the L4A product for tropical forests uses relative height (RH) RH 98 and
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RH 50 to predict a median above ground biomass density AGBD of 300 Mg Ha−1 for tropical forests (0.66 r2

and root mean square error (RMSE) of 10.4) (Duncanson et al 2022). Ecological theory suggests that a
stratified forest with more large emergent trees is indicative of an older forest (Halle et al 1980), which
generally has higher biomass and carbon content. Therefore, incorporating canopy layers may improve
prediction of tropical forest biomass. Trait theory suggests that canopy scale leaf traits may also be correlated
with tree architecture (Violle et al 2007). For instance, plant leaf traits have been related to plot level
architecture in the tropics and predicted with leaf spectral data (Doughty et al 2017). Remotely sensed
canopy trait maps using Sentinel-2 for phosphorus, wood density and specific leaf area (SLA) among other
traits for broad swaths of tropical forests (Aguirre-Gutiérrez et al 2021) and such optically derived leaf traits
may be correlated with structure at the landscape scale.

Stratification of forest vertical layers may be due to genetic constraints that evolved over time (floristics)
or trees not achieving their genetic heights (potential height under optimal environmental conditions). The
debate about what sets the upper limits of tree height largely involves either hydraulic limitation (Koch et al
2004), mechanical limitation, or environmental factors such as wind speed (Jackson et al 2021). Certain
factors drive heights such as the need to overtop competitors or disperse seeds while other factors reduce it
such as hydraulic failure and vulnerability to wind. Environment alone could also directly impact tree height
and structure, with hydraulic limitations, carbon deficiencies, or wind regimes causing trees to not being able
to achieve their genetic height. There is a literature describing how the environment (soils or climate)
impacts the species composition in tropical forests. For instance, Amazonian species composition may follow
a south-west/north-east soil fertility gradient and a north-west/south-east precipitation gradient (ter Steege
et al 2006). Soil cation concentrations are the primary driver of floristic variation for Amazonian trees
(Tuomisto et al 2019) with climate being of secondary importance. However, in central African forests,
climate is considered to be the driving factor of floristic patterns (Réjou-Méchain et al 2021).

The structure of forests is also a principal factor in determining not just the mean environment
experienced by forest-dwelling organisms, but also the diversity, extent, and variability of
microenvironments. The extent and diversity of microenvironments directly affects the niches available to
organisms, and hence the diversity of forest-dwelling organisms. For instance, Oliveira and Scheffers (2019)
proposed an ‘arboreality hypothesis’ where species have increased ranges because they can take advantage of
changing microclimates in different canopy layers as temperatures shift due to elevation and latitude. They
further suggested that future warming may push arboreal species towards the cooler ground layer (Oliveira
and Scheffers 2019). Another study suggested that climate change may drive arboreal species in hot sparse
canopies towards greater ground use (Eppley et al 2022). Detailed models now exist to predict canopy
microclimate with forest structure as a possible input (Maclean and Klinges 2021). Therefore, forest
structure can help determine microhabitats which becomes even more critical as climate change progresses.

Here we use GEDI to understand tropical forest structure and address the following questions:
Q1—Is the classic paradigm of ‘old growth’ tropical forest architecture with multiple canopy layers

correct (visually represented in figure 1)?
Q2—What drives the geographic distribution of canopy structure (soils, e.g. total cation exchange

capacity, environment, e.g. maximum temperature and/or leaf traits)?

2. Methods

2.1. GEDI data
We used the vertical forest structure (L2A and L2B, Version 2) and biomass (L4A—see below) products from
the GEDI instrument (Dubayah et al 2020) based on the ISS between 18 April 2019 and 17 February 2021 for
tropical forest regions (Amazonia, Central Africa, and SE Asia). The L2A product has already been ground
validated in tropical forests and that is not a goal of this paper (Marselis et al 2018, 2020, Liu et al 2021, Cobb
et al 2023). We principally used the plant area volume density (PAVD) profile, defined as the PAI (plant area
index—which incorporates both leaf and wood) separated into 5 m vertical bins. We applied a number of
data filters to ensure quality such as: degrade flag= 0 (e.g. not in degraded altitude), L2A and L2B quality
flags= 1 (simplified metric to only use highest quality data based on energy, sensitivity, amplitude, and
real-time surface tracking quality), sensitivity⩾ 0.95, power beams during night and day and coverage
beams during night only (nights are generally better to remove the negative impact of background solar
illumination). To ensure that the footprints were in tropical forest regions, we applied three further data
quality filters and two further data analysis filters.
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2.2. Data quality filters
(1) We used the well-established synthetic aperture radar dataset TanDEM-X (Krieger et al 2007) as a

comparison to GEDI and removed GEDI data where elevation difference from GEDI is greater than
±100 m indicating high uncertainty.

(2) We used the well-established Landsat dataset to only include data with tree cover>90% in the year
2010, defined as canopy closure for all vegetation taller than 5 m (Hansen et al 2013).

(3) We used the well-established MODIS dataset to further ensure that we select GEDI shot only in forest,
by cross-validating forest cover with MODIS. The GEDI footprint was classified as plant functional type
(PFT) Broadleaf Evergreen Tropical based on MODIS MCD12Q1v006 Product from 2021 (Friedl et al
2010) at 500 m spatial resolution following the Land Cover Type 5 Classification scheme. We identified
the 25 m GEDI footprint within the 500 mMODIS pixel for comparison.

2.3. Data analysis filters
(1) We screened out areas with tree heights<10 m using the RH metric 98% which was calculated as the

height relative to ground elevation under which 98% percentage of waveform energy has been returned.
To further ensure quality we vary this number in a sensitivity study (15, 20, and 25 m (figure S1)).

(2) We compared an index of forest integrity as determined by degree of anthropogenic modification
(Grantham et al 2020) to our results (figure S2).

If the L2a GEDI footprint passed these filters, we then estimated the number of canopy layers (peaks—P).
If there were two layers, we estimated the height (H) and depth (D) differences between the two peaks
(figure 1). Ecologically the number of peaks, as well as the height and depths between peaks will influence
microclimate, vertical light environment, animal niche space, and biomass. In figure 1, we show an example
GEDI footprint and then classify it using a flow diagram on the right.

(1) We first classified each footprint by the number of local maxima (change in first derivative—hereafter:
peaks= P) using the Matlab (Mathworks) function ‘islocalmax’ on each PAVD profile. If it had one
peak, it was classified as one peak or stratum (yellow line figures 2 and 3). If it had two peaks, we further
classified it (see below). If it had three or more peaks it was classified as 3 peak (orange line figures 2
and 3). We did not further classify waveforms with three or more peaks because they were rare (<1%).

(2) If the waveform had two distinct peaks, we then classified whether peak top (PT= the peak farther from
the ground) had more PAVD than peak ground (PG= the peak closer to the ground). By distinct peaks
we mean the peaks were more than 10 m vertically apart. If the peaks were not distinct (e.g. H ⩽ 10 m)
then the peak was classified as 2p_even (black line figures 2 and 3).

(3) We then used the following equation to determine if there was a large (>50%) or small (<50%)
difference in the depth (D) of the peaks (where ABS is the absolute value):

D=

(
ABS

(
PAVD of PT−PAVD of PG

PAVD of PT

))
∗ 100. (1)

If PG> PTwithD less than 50% difference between the peaks, we classify it as 2p_eq_high (red
line figures 2 and 3), ifD is more than 50% difference it is classified as 2p_eq_low (magenta line
figures 2 and 3). If PG < PT with D less than 50% difference, it is classified as 2p_uneq_high
(green line figures 2 and 3), if D is more than 50% difference 2p_uneq_low (blue line figures 2
and 3).

Overall, there are seven distinct profiles, but we do not show results from three plus peak forests as they
were rare (<1%). To calculate the percentage of one peak PAVD profiles (blue line figures 2 and 3), we sum
the number of one peak profiles, divided by all profiles within a 0.1 by 0.1 degrees size grid cell (resolution
was chosen for visual clarity). We recognize that our thresholds for H and D are somewhat arbitrary, and
therefore, in a sensitivity study we tested these thresholds by changingH to 5 or 15 m and D to 40 or 60% but
only found a change of∼1% in structural parameters on average (figure S3). The biggest change resulting in
∼2% change in structural parameters occurred by increasing H to 15 m.

We downloaded the GEDI L4B AGBD product from DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.
pl?ds_id=2017) and averaged it for each 0.1 by 0.1◦ pixel. With this data, we created a histogram of tree
heights for each 0.1 by 0.1◦ subregion for all tree heights (RH 98) that pass our filters. The peak of the
histogram is classified as median RH 98 tree height. For each 0.1 by 0.1◦ subregion, we estimate the total PAI
as a proxy for commonly used metrics like leaf area index.
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Figure 2. (left) Each pixel represents the number of one peak footprints (as represented by the yellow line on the right) divided by
total number of GEDI footprints in a 0.1 by 0.1◦ region for Amazonia. Black lines are ecoregions for the Amazon region. Red lines
are rivers and black dots are field plots used in figure 4. (right) Average (solid)—sd (dashed) waveforms for the region in the black
box. The text in the top right shows the percentage of the total number of individual footprints analyzed. PAVD is plant area
volume density. Cyan is the average waveform for all data (100%) in the black box. Definitions: 1 peak (yellow line), 2p_even
(black line), 2p_eq_high (red line), 2p_eq_low (magenta line), 2p_uneq_high (green line), 2p_uneq_low (blue line).

Figure 3. (left) Each pixel represents the number of one peak footprints divided by total GEDI footprints in a 0.1 by 0.1◦ region
for SE Asia (A) and Central Africa (C). Red lines are major rivers. (right) Average (solid)—sd (dashed) vertical footprints for the
region in the black box for SE Asia (B) and Central Africa (D). For each type, we give the percentage and the total number of
individual footprints analyzed. Averages representing<1% were removed. PAVD is plant area volume density. Cyan is the average
waveform for all data (100%) in the black box. Definitions: 1 peak (yellow line), 2p_eq_high (red line), 2p_eq_low (magenta
line), 2p_uneq_high (green line), 2p_uneq_low (blue line).

2.4. Measuring scale dependence with individual tree data
We recognize that vertical canopy layers may be a function of spatial resolution. To test the dependence of
vertical layers on spatial scale, we use a database (Araujo-Murakami et al 2014, Doughty et al 2015) where,
for a series of plots in six diverse regions of the Amazon basin, we estimate stratification by calculating crown
area using measured tree diameter at breast height (DBH) and tree height for individual trees in
Caxiuana—4 ha, 2250 trees>10 cm DBH; Tambopata—2 ha, 1367 trees> 10 cm DBH; Iquitos—2 ha, 1165
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trees> 10 cm DBH; Tapajos—18 ha, 1036 trees> 25 cm DBH; Bolivia—2 ha, 974 trees> 10 cm DBH;
Tanguro—1 ha, 366 trees> 10 cm DBH. Plot locations are shown as black dots in figure 2. For each plot, we
used tree height in each 5 m tree height bin (5–35 m) to estimate crown diameter following Asner et al 2002,
shown below as equation (2), where DBH is the DBH (cm) and crown diameter is in meters,

Crown diameter (m) = 9.3 ∗ ln(DBH (cm) )− 22.2. (2)

We estimate crown area to ground area ratio for all trees in the plots (e.g. Iquitos 2 ha= 1165
trees> 10 cm DBH) and on a subset of groups of 50 trees to better approximate the 25 m size of a GEDI
footprint, as this is an approximate average number of trees>10 cm DBH per 25 m diameter circle in the
tropics. For instance, a typical one hectare tropical forest plot would contain between 500 and 1000 trees
with DBH> 10 cm (Malhi et al 2021) (∼20 GEDI footprints if evenly spaced—which would not happen in
practice) and each footprint, therefore, might contain 25–50 trees (with DBH> 10 cm). We then use the
same ‘peak’ procedure (equation (1)) where we estimated the percentage of GEDI points with only one-peak
for each region. We estimate crown area to ground area for each 5 m bin and vertically area summed. We also
show median and maximum tree height for the plots. To test how the values in equation (2) influence our
results, we varied the slope in equation (2) (9.3) by±5% and show how this impacts the results in figure 4.
To test the dependence of structure on spatial resolution, we estimate % one peak for spatial resolutions of
10 m (figure S4), 25 m and 1 ha (figure 4).

2.5. Comparison data layers
We compared percent one peak to several other climate, soils, leaf traits, and ecoregion maps listed below for
the Amazon basin. Here we focus on the drivers of structure and validating GEDI for the Amazon region, but
follow-on studies may do a similar analysis for Africa and SE Asia. Each dataset had its own resolution, which
we standardized to 0.1 by 0.1◦.

2.6. Soils
We used data from soilgrids www.soilgrids.org/ (Batjes et al 2020). We focused on total cation exchange
capacity at pH 7 from 0 to 5 cm in units of mmol(c)/kg as previous studies had suggested this to be an
important variable to explain floristic composition (Figueiredo et al 2018).

2.7. Climate
We averaged TerraClimate (Abatzoglou et al 2018) www.climatologylab.org/terraclimate.html data between
2000 and 2018 for climatic water deficit (CWD) (the difference between monthly reference
evapotranspiration calculated using the Penman Monteith approach and actual evapotranspiration), VPD
(VPD in kPa), mean monthly precipitation (mm/month), potential evapotranspiration (PET) and
maximum and minimum temperature (◦C). These data were originally based on climatic research unit
time-series version 4 data and modified by Abatzoglou et al (2018).

2.8. Leaf traits
For plots in the Global EcosystemMonitoring (GEM) network (listed in table 1) (Malhi et al 2021), we found
the PAVD profile for the footprint closest to the plot as well as all footprints within a 0.03◦ grid around the
plot coordinates. Most of these plots had in situ leaf traits measured to account for 70%–80% of the basal
area (of trees>10 cm DBH) of 1 ha plots. Based on the field campaigns, (Aguirre-Gutiérrez et al 2021) used
Sentinel-2 to create remotely sensed canopy trait maps for P= phosphorus %, WD= wood density g cm−3,
and SLA= specific leaf area m2 g−1. We then compared the GEDI profile (% one peak) to the trait value
predicted by those maps to that footprint.

2.9. Ecoregions
Ecoregions reflect the distributions of a broad range of fauna and flora across the entire planet
and we use them as a proxy for plant biogeography www.sciencebase.gov/catalog/item/
508fece8e4b0a1b43c29ca22—(Olson et al 2001).

2.10. Statistical analysis
We used the matlab function ‘fitlm’ to fit linear models and ‘fitnlm’ for the non-linear models to compare
variables such as soils data, environmental data, or leaf trait data (at 0.1◦ resolution) to GEDI structure data
of what percent of all footprints in a 0.1◦ area have one peak. The P values listed are for the t-statistic of the
two-sided hypothesis test. We calculated the Beta weight (the regression slope) after standardizing both the
dependent and predictor variables to z-scores using the matlab function z score.

6

https://www.soilgrids.org/
https://www.climatologylab.org/terraclimate.html
https://www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22
https://www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22


Environ. Res.: Ecol. 2 (2023) 035002 C E Doughty et al

Figure 4. Tree height versus crown area/ground area as estimated with plot level tree DBH and tree height for six regions as shown
in Figure two (A= Tapajos—18 ha, B= Tambopata 2 ha, C= Caxiuana 4 ha, D= Bolivia 2 ha, E= Iquitos 2 ha, F= Tanguro
1 ha). Thin lines are groups of 50 trees and the bold line is the plot average. For each 5 m tree height bin we estimate crown
diameter following Asner et al 2002. We then use the same ‘peak’ procedure as with GEDI data to estimate one vs two peak forests
and show this as a percentage. The confidence intervals show results modifying the slope of the equation from Asner et al 2002by
5%. We also show median (tr-me) and maximum tree height (tr-max) for the plots. Results from the Tapajos are for trees>25 cm
DBH only.

3. Results

Most individual GEDI footprints in tropical forests do not have multiple layers (as artistically rendered in
figure 1) and instead have a single peak in vegetation density at∼15 m, but this ranged geographically
(regionally and between continents) between 60 and 90% (figures 2 and 3). Within the Amazon basin
(figure 2), the broad geographic patterns were a large central region with low stratification, surrounded by
another broad region with greater stratification bordered to the west by the Pebas formation (Higgins et al
2011), to the east by the Tapajos River, and the South at∼12◦S. Another region of lower stratification
occurred towards the southeast in the ‘arc of deforestation’ and savanna transition zones. River floodplains
also tended towards increased stratification. The Congo basin showed a broadly similar spatial orientation
with a central area with lower stratification surrounded by regions with greater stratification (figure 3).
Southeast Asia, composed of mainly islands, showed greater stratification towards the island center
(figure 3). The island of New Guinea had increasing stratification moving
northward.

A low PAVD peak (e.g.∼15 m) may also indicate forest disturbance due to selective logging or other
human impact. For instance, there was selective logging in parts of Borneo (Riutta et al 2018) and this
impacted structure by increasing the dominance of shorter pioneer one-peak forests (i.e. Bornean logged
plots (SAF table 1) are 78% one peak versus 44% for old growth forests) (table 1). However, the filters we
used (tree height, MODIS PFT, logging product) should remove most human impact (although there may be
older legacy effects we cannot account for). We tested this by increasing the minimum tree height (between
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Table 1. Structure and trait data for regions surrounding plots from the GEM network (Malhi et al 2021). The columns are global
region, RAINFOR plot code, plot structure classification for the footprint closest to the plot coordinates and the height of this footprint
(highest vertical bin). Next is the average % one peak for footprints within 0.03◦ of the coordinates surrounding the plot and the average
height of area. The last three columns are regionally averaged remotely sensed trait data (P= soil phosphorus %, WD= wood
density g cm−3, and SLA= specific leaf area—m2 g−1, Aguirre-Gutiérrez et al 2021).

Region Rainfor code Plot classification Height % 1 peak near plot Average height P WD SLA

SE Asia DAN-04 Magenta 80 21 61 0.10 0.61 0.01
SE Asia DAN-05 Yellow 35 22 60 0.10 0.61 0.01
SE Asia LAM-01 Magenta 50 56 45 0.09 0.6 0.0105
SE Asia LAM-02 Magenta 50 44 51 0.10 0.59 0.0104
SE Asia MLA-01 Magenta 55 78 40 NaN NaN NaN
SE Asia SAF-01 Yellow 45 88 43 0.10 0.58 0.0103
SE Asia SAF-02 Yellow 40 71 44 0.10 0.59 0.0101
SE Asia SAF-03 Yellow 40 80 44 0.10 0.58 0.0105
SE Asia SAF-04 3-peak 95 53 62 0.10 0.6 0.0106
SE Asia SAF-05 Yellow 35 100 38 0.10 0.58 0.0102
W. Amazon ALP11 Blue 45 82 41 0.10 0.61 0.01
W. Amazon ALP30 Yellow 40 80 41 0.10 0.6 0.01
W. Amazon SPD02 Yellow 45 78 47 0.10 0.6 0.009
W. Amazon SPD01 Yellow 60 80 46 0.10 0.6 0.0091
W. Amazon TRU08 Yellow 40 81 47 0.10 0.6 0.0089
W. Amazon TRU07 Yellow 50 79 49 0.10 0.6 0.0089
W. Amazon ESP01 Yellow 40 88 38 0.12 0.62 0.0075
W. Amazon WAY01 Yellow 45 87 43 0.12 0.62 0.0074
W. Amazon TRU03 Yellow 50 98 38 0.11 0.62 0.0076
W. Amazon ACJ01 Yellow 30 89 39 0.12 0.62 0.0078
E. Amazon CAX-03 Yellow 40 82 38 0.09 0.61 0.0102
E. Amazon CAX-06 Black 35 0 35 NaN NaN NaN
E. Amazon STB-08 Yellow 45 69 45 0.09 0.61 0.0104
E. Amazon STD-05 Yellow 40 81 35 0.08 0.65 0.0108
E. Amazon STD-10 Yellow 40 94 38 0.09 0.62 0.0101
E. Amazon STD-11 Yellow 30 85 39 0.08 0.61 0.0102
E. Amazon STN-02 Blue 40 43 42 0.09 0.64 0.0104
E. Amazon STN-04 Yellow 25 90 34 0.09 0.64 0.0103
E. Amazon STN-06 Yellow 35 80 36 0.09 0.64 0.0102
E. Amazon STN-09 Yellow 40 95 33 0.09 0.63 0.01
E. Amazon STO-03 Yellow 45 70 44 0.08 0.66 0.0106
E. Amazon STO-06 Yellow 35 89 44 0.08 0.65 0.0106
E. Amazon STO-07 Yellow 40 73 44 0.08 0.66 0.0108
Gabon IVI-01 Yellow 40 60 44 0.09 0.64 0.011
Gabon IVI-02 Yellow 35 57 46 0.09 0.65 0.0109
Gabon LPG-01 Black 45 57 44 NaN NaN NaN
Gabon LPG-02 Yellow 50 33 56 NaN NaN NaN
Gabon MNG-04 Yellow 25 63 42 NaN NaN NaN

15, 20 and 25 m) and found minor changes at the 25 m threshold, but no visible changes beyond that (figure
S1). We also show comparisons of percentage of one peak to a forest disturbance product (Grantham et al
2020), which showed large regions dominated by one peak forests in areas of minimal human disturbance
(figure S2).

On a subset of the Amazon (5 by 5◦ black box regions chosen to represent the broader region in figures 2
and 3), we averaged the vertical profile for each footprint in each of six structural categories (see methods)
and found ‘one peak’ forests peaked in PAVD at 15 m with a fairly linear decline going upwards until∼40 m
(figure 2 yellow line=mean− sd). The next most common profile type was 2p_eq_high (figure 2 red
line=mean− sd) at∼5% of the results. Average forest height of this forest type exceeded the one peak
forests with a maximum height at∼45 m versus 40 m. This forest type ranged between 1% and 10% of forest
pixels and was more abundant in the Southeast and Northwest of the Amazon (figure 6—similar figure for
Central Africa is figure S5 and SE Asia figure S6). The third most common forest structure at 3.2% was
represented by the black line (2p_even). This forest type ranged between 1 and 5% across the Amazon and
was widely dispersed throughout the Basin. The next most common 2-peak structure at∼3.2% was magenta
(2p_eq_low). This had a similar distribution to the ‘red (2p_eq_high)’ line, but with an additional hotspot in
the Southeast that was not present in the ‘red (2p_eq_high)’ (figure 6).
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Table 2. Percent one peak forest of all GEDI footprints closest to the GEM plots and within a 0.03◦ radius around the plot coordinates.
Same as results from table 1 but averaged (±sd) by continental region.

W. Amazon E. Amazon Gabon SE Asia

Nearest to plot 90% 85% 80% 50%
Within a 0.03◦ radius 84± 28% 73± 26% 54± 12% 61± 27%

3.1. Compare GEDI structure to predicted structure
To test the dependence of vertical layers on spatial scale, for six locations (shown as black dots in figure 2), we
used DBH, tree height, and a canopy diameter model (Asner et al 2002) to estimate that total vertically
summed crown area/ground area averaged 1.8 m2 m−2 (0.96–2.3 min max). Averaging at the 1 ha scale for
all trees>10 cm DBH (>25 cm for the Tapajos) in the plots (size ranging between 2 ha and 18 ha) showed a
single peak that averaged 20 m (between 17.5 and 22.5 m) in crown area/ground area (thick lines in figure 4).
This 20 m height may be taller than the GEDI mean of 15 m due to the absence of smaller 0–10 cm DBH
trees measured at the plots. We then subsampled 50 trees from each plot (a better approximation for the
GEDI footprint size) and more stratification resulted. For these subsets, we calculated one peak/all data and
found a low in Tambopata (figure 4(b)) of 56% one peak to a high of 95% one peak in the Tapajos
(figure 4(a)) with the other sites ranging from 73% to 77% one peak, which is a good approximation of
percentage one-peak across the Amazon basin (∼79%) (figure 2). If we average across the 6 sites at a spatial
resolution of 25 m (like GEDI) we find 75% one peak, but if we reduce the resolution to 10 m, then % one
peak drops to 65% (figure S4), so the spatial resolution of the footprint clearly matters for our question. The
Tapajos results must be viewed with caution because only large trees (>25 cm DBH) were recorded, which
led to a very high percentage of one peak (single stratum) forests. According to figure 2, Tambopata and the
Tapajos are near transition zones of high and low % one peak forests while most other plots are in areas of
high % one peak (figure 2). Therefore, spatial scale matters since averaging over a wider spatial area will
mask individual tree structure.

3.2. How representative is the structure in plot networks compared to the broader Amazon?
To answer this, we compare GEDI footprints (closest footprint and all footprints averaged within 0.03◦

radius of the plots) to a well-studied plot network (GEM—(Malhi et al 2021) in tables 1 and 2). We found
the GEDI footprint nearest to the plots showed a gradient from the Western Amazon (90% one peak),
Eastern Amazon (85%), Gabon (80%), to Borneo (50%). Averaging all nearby footprints showed similar,
except for Gabon, but generally lower trends: Western Amazon (84%), Eastern Amazon (79%), Gabon
(54%), and Borneo (61%). In table 1, we show data for each individual plot along with remotely sensed trait
data (Aguirre-Gutiérrez et al 2021) calibrated from in situmeasurements at the plot network. We found a
significant relationship (figure S9) between structure and SLA (r2 = 0.12, P < 0.05, % one
peak=−68∗SLA+ 1.4) but not with wood density and percent phosphorus. However, this is a pan tropical
analysis, and the signal is dependent on low SLA values along an elevation gradient where GEDI is less
accurate because of difficulty in discerning the ground layer. In Borneo, the GEM plot network (Riutta et al
2018) is along a logging gradient with a clear change in structure (78% one peak for logged plots versus 44%
one peak for old growth forests). We found a significant increase in SLA (P < 0.05) with disturbance and a
close to significant increase in %P with disturbance (P = 0.06).

3.3. Continental comparison
We compared the average PAVD profiles from the entire Amazon to the average PAVD profiles for all SE Asia
and Africa (average continental scale 0.1 by 0.1◦ pixels and not just the black boxes in figures 2 and 3). On
average, the Amazon had a greater percent of one peak forests (79± 9% sd) than either SE Asia or Africa
(72± 14% v 73± 11%). Median tree height (RH 98) was lower in the Amazon at 25.6 m than in Africa at
28.5 m or SE Asia at 28.7 m. In the black box regions shown in figure 3 for Africa and SE Asia, one peak
forests were most abundant (∼70%) with a similar peak at 15 m (figure 5). In both the Africa and SE Asia
subplots, both red (2p_eq_high) and magenta (2p_eq_low) structure types were much more common forest
structures than in the Amazon, accounting for>20% of forest types vs<10% in the Amazon. The average
curves changed shape with Amazon having more PAVD in the mid-canopy∼20 m and Africa and SE Asia
having more PAVD in the upper canopy∼30 m. River basins throughout the tropics had similar structural
properties.

3.4. What controls structure?
To explain the spatial patterns in the distributions of % one peak forests, we compared maps of percent one
peak to a variety of datasets such as tree height (RH 98), ecoregions, GEDI L4A AGBD, PAI, number of
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Figure 5. The change in the average (solid) and sd (dashed) forest structure between the Amazon and Africa (A) and the Amazon
and SE Asia (B) for the regions highlighted in black in figures 2 and 3. The numbers are the listed differences in the percentage
abundance. Cyan is not listed as it represents 100%. Definitions: 1 peak (yellow line), 2p_eq_high (red line), 2p_eq_low (magenta
line), 2p_uneq_high (green line), 2p_uneq_low (blue line).

footprints, climate (VPD, PPT, CWD, PET, Tmax and Tmin), and total soils cation exchange capacity
(figure 7—similar figure for Africa is figure S7 and SE Asia figure S8). The strongest correlations were with
tree height and AGBD, with AGBD being a slightly better predictor for one peak forests (0.12 vs 0.14 r2

respectively) (figure 8). We compared meteorological data for VPD, PPT, CWD, PET, Tmax and Tmin to
percent one peak and all were highly significant (P < 0.001) but explained relatively little variance in the
data. Tmax explained the most at 5% of the variance, followed by VPD at 2.5% and the others explaining
∼1% of the variance. Likewise, total cation exchange capacity was highly significant but again explained only
about 1% of the variation (figure 8). Other variables, such as number of footprints, were not related
(r2 < 0.01), but PAI explained∼4% of variance, which is again, likely related to tree height. We then
combined all climate and soil variables which explained∼9% of variance and the key parameters were Tmax,
VPD followed by total cation exchange capacity.

Ecoregions, which may be a good proxy for floristics, delineated structure well for particular ecoregions.
For instance, ecoregion 68, the Tapajos-Xingu moist forest, (figures 7(a) and (b) right circle) had boundaries
similar to boundaries of our structure dataset with a lower average value of percent one peak (75% vs 80%)
than surrounding ecoregions. Another ecoregion, the southwest Amazon moist forest, with the boundary of
the Pebas formation also delineated the structure data quite well. There were some regions that were partially
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Figure 6. Spatial distributions for the Amazon basin for different types of the ‘2 peak’ forests. The color labels are associated with
the colors of the lines in figures 2 and 3. The colorbar scales are different between panels.

Figure 7. Different data layers that were used for comparison with the percent one peak dataset. (A) Spatial distribution of the
percentage of one peak forests (same as figure 1) with the ecoregions of the Amazon basin overlaid (Olson et al 2001). Red circles
highlight two ecoregions of interest. (B) A map of the ecoregions alone shown above for clarity with percent one peak for each
ecoregion. (C) Max temperature—Tmax (◦C), (D) total cation exchange capacity mmol(c)kg−1,(E) median tree height from RH
98 GEDI with ecoregions, and (F) plant area index from GEDI.
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Figure 8. (A) Tree height (RH 98%), (B) AGBD from GEDI L4B, (C) cation exchange capacity mmol(c)kg−1and (D) Tmax (◦C)
vs percent one peak forests for the Amazon basin. For each we show the P value, r2, RMSE and the standardized beta coefficient
(Beta).

delineated well but not entirely. For instance, even ecoregion 68 (figures 7(a) and (b) left circle) had a sharp
boundary in structure in the south not accounted for in the ecoregion.

4. Discussion

There are large (>10%) differences in forest structure within the Amazon basin (60–90% one peak). Further,
there are large average differences between the Amazon (79± 9 sd) vs. SE Asia and Africa (72± 14 v 73± 11
respectively). We are confident that the spatial patterns of structural changes are not mainly due to modern
human influence, because we carefully screened for human influence using several independent
remotely-sensed products (MODIS PFT) (Friedl et al 2010), a Landsat based deforestation product (Hansen
et al 2013), and GEDI tree height itself (Dubayah et al 2020). Plot data from undisturbed regions (Doughty
et al 2015) (DBH and tree height) showed similar structural trends in old growth plots (figure 4). Human
influence, as measured through forest integrity (Grantham et al 2020), also did not explain our geographic
patterns of structure (figure S2). The finding that the majority of GEDI footprints had a single PAI peak at
∼15 m was initially surprising. However, several tropical aircraft lidar campaigns showed similar shape for
the lowland tropics (a single peak when averaged over∼1 ha) but with a slightly higher peak in PAI at∼20 m
(Asner et al 2014, Asner and Mascaro 2014). We hypothesize that the difference in the height of peak PAI
may be due the difference in ‘energy return’ profiles. Due to an abundance of plant material in the lower
canopy, it is necessary to correct for the reduced energy reaching the understory. Full waveform information
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from GEDI can help correct for this energy return. In addition, prior work comparing TLS, LVIS and
simulated GEDI data has found high-quality GEDI profiles on average to be accurate (Marselis et al 2018,
2020). Finally, we are confident that the bulk of structural differences across the tropics are of natural origin
because on top of the filters applied, some regions of the Amazon far from human influence still had the
dominance of one peak forests, such as the broad region north of Manaus in the Amazon, although there
may be ancient legacy effects that we do not account for (figure S2).

The classic paradigm of ‘old growth’ tropical forest architecture (visually represented in figures 1 and
figures in Halle et al 1980) is a generally closed upper canopy with large emergent trees at∼30–35 m where
PAI peaks followed by a second peak at 15 m with slightly lower PAI. These PAI peaks at∼15 and 30 m are
occupied by ‘trees of the present’ taking advantage of increased light cells (top of canopy and a second area of
increased light at∼15 m where light flecks converge) (Halle et al 1980). This ‘classic paradigm’ implies a
stratified canopy that might be best represented by the green (2p_uneq_low) or yellow (2p_uneq_high) lines
in figures 2–5, but we find that this forest structure is relatively uncommon across the tropics making up just
3%–6% of tropical forest area. In contrast, by far the most common PAVD profile across the tropics has a
single peak in PAI density at 15 m and this forest type likely reflects the absence of a closed upper canopy. In
our color scheme (figures 2 and 3), we can think of a gradually increasing proportion of vegetation percent in
the upper canopy going from the highest PAI at the top with blue (2p_uneq_high) (0.5% of total footprints),
green (2p_uneq_low) (2%), red (2p_eq_high) (5%), magenta (2p_eq_low) (3%), and the lowest at yellow (1
peak) (86%). Overall, these results show that a ‘stratified’ forest with higher upper canopy closure is relatively
rare across tropical forests.

Our structure maps broadly matched results from plot-based studies (figure 4). We also found strong
correlations between our structure maps and detailed maps of structure, floristics, climate and soils for a
broad region of Central Africa from Fayolle et al (2014) where old growth celtis forest is associated with
regions with more vertical layers (∼60% 1 peak) while more degraded or young celtis forests with more
pioneer species is associated with less structure (70% one peak) (Fayolle et al 2014). A floristic map for all of
central Africa also showed correlations with our structure map (Réjou-Méchain et al 2021) with, for
instance, north (more structure) to south (less structure) gradients in Central Africa (figure 3) that match a
transition in their figures from PCA 1, where floristics was controlled by a transition between cool,
light-deficient forests and forests with high evapotranspiration rates, to PCA 2, where floristics were
controlled more by seasonality and maximum temperature. In S.E. Asia, we compared our structure results
to a logging gradient (Riutta et al 2018) with known structural changes and found GEDI footprints near
Danum valley, where the tallest trees were found, also had some of the highest stratification (44% one peak)
versus logged (78% one peak) which gives further confidence in the results. Broadly, old growth forests in SE
Asia have the highest levels of stratification and this may be partially due to the presence of Dipterocarps
which are the tallest tropical trees (Shenkin et al 2019, Jackson et al 2021).

Most of our independent datasets of soils or climate (as well as our combined model) did not strongly
capture the spatial patterns of forest structure in the Amazon basin (figure 7). Tree height and AGBD did
match these patterns (figure 8), but those variables cannot be considered independent of structure. However,
patterns shown in figure 4(c) in Figueiredo et al (2018) are similar to the one we highlight in this study
(figure 2) (Figueiredo et al 2018). Figueiredo et al (2018) created species distribution models for 40 species
across the Amazon basin using 19 bioclimatic variables, 19 soil variables, and four remote sensing variables
(including GLAS derived canopy height (Simard et al 2011)). Overall, for most species, a combination of
soils and climate variables explain most variance (similar to (Tuomisto et al 2019)) but single-variable
models did poorly with an average of less than 8% of the variance explained. This broadly reflects our
attempts to model structure with single variables (given that the dependent variable is binary—i.e. one peak
vs two—a lower r2 is expected). There was a tight correlation between regions with less structure (e.g. higher
percentage of one peak) and areas where soils are the limiting factor to species occurrence, and regions with
greater structure (i.e. lower percentage of one peak) to areas where climate is the limiting factor to species
occurrence. Perhaps deeper, more fertile soils allow for taller (either species or trees reaching their genetic
height) and higher canopy closure forest types. Canopy height from the GLAS was the second most
important variable for explaining species distributions, so it is possible that the Figueiredo et al (2018) map
shows similar patterns to figure 2 due to the inclusion of the height metric (a strong predictor of structure).
A global study of forest structure based on upscaling terrestrial lidar with WorldClim2 datasets showed some
correlations with our structure maps but also missed many of the regional changes (Ehbrecht et al 2021).

Ecoregions delineated boundaries in structural composition in a few key areas of the Amazon basin like
the Pebas formation (Higgins et al 2011) and the Tapajos region in Para, Brazil (figure 7). Higgins et al
(2011) found a strong east-west gradient with an almost complete floristic turnover and an order of
magnitude change in soil cation exchange capacity associated with the presence of the Pebas formation
(Higgins et al 2011). The line marking the boundary of the Pebas formation also seems to strongly delineate
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forest structure with one peak forests more abundant east of this line with lower cation exchange capacity
and two peak forests more abundant to the west with higher cation exchange capacity. There is a further
boundary delineated by the very wide (12–16 km) Tapajos River with forests to the west having a higher
percentage one peak vs the eastern forests. Interestingly, some ecoregions (like 68) matched well with
boundaries of vegetation structure, except for a few key areas (like in the south of region 68—figure 7). This
may indicate that forest structure could be used in the future to improve upon current ecoregion boundaries.

4.1. What causes the dominance of one peak forests in the tropics and the spatial changes in these
patterns?
A forest with a closed emergent canopy would have multiple stratum, but most forests likely lack a closed
upper layer, leading to the dominance of the one peak forests. Rephrasing the initial question, we can instead
ask: Is the rarity of a closed upper layer canopy (or relative rareness of large emergent trees) due to the
environment (soils or climate) or floristics (species composition)? In practice it is difficult to disentangle
floristics and environmental drivers and there is a large literature describing how the environment (soils or
climate) impacts the species composition. For instance, Amazonian species composition may follow a
south-west/north-east soil fertility gradient and a north-west/south-east precipitation gradient (ter Steege
et al 2006). Soil cation concentrations is the primary driver of floristic variation for trees (Tuomisto et al
2019) with climate being of secondary importance at regional scales. Environment alone could also directly
impact tree height and structure, with hydraulic limitations or nutrient deficiencies causing trees to not
being able to achieve their genetic height. Soil depth can impact structure as shallow soils can cause stunted
root growth leading to a thinner upper canopy structure (Halle et al 1980).

4.2. What may explain the continental scale differences in structure between the Amazon and other
tropical regions?
Previous authors have noted large continental scale differences in AGBD and tree height (Borneo> Central
Africa> Amazon) that broadly match the trends we show in structure (Feldpausch et al 2011, Lewis et al
2013). For instance, the Congo basin had average AGB values of 429 Mg ha−1, similar to Bornean forests
(445 Mg ha−1), and much higher than the Amazon (289 Mg ha−1) (Lewis et al 2013). We show similar broad
trends with the Amazon at 79± 9 sd % one peak and 25.6 m height, SE Asia 72± 14 and 28.7 m height and
Central Africa 73± 11 and 28.5 m (although these standard deviations overlap). Lewis et al (2013) had
hypothesized that AGBD differences between Amazon and Africa were due to different biomass residence
times and the differences between Africa—Borneo differences were possibly due to NPP differences.
However, tree height and biomass are structural attributes and do not explain the difference in continental
structure.

To fully understand structural gradients across the Amazon, higher resolution aircraft lidar can be used.
Asner et al (2014) flew aircraft lidar along an elevation and nutrient gradient in Peru and found that canopy
height and shape (height of peak canopy volume divided by canopy height) had a high, negative correlation
with gap density (Asner et al 2014). Environmental stress either up an elevation gradient or from high soil
fertility to low, led to shorter forests with more gaps and a peak canopy volume at a lower height in the
canopy. These changes are broadly correlated with our maps of percentage of one peak, with perturbation
(up elevation gradients or fertility gradients) increasing percentage of one peak forests. We found canopy
stratification decreased as Tmax increased and soil fertility decreased (figure 8). Therefore, our results support
this paradigm that moving away from ideal conditions may result in less structural complexity. Climate
change will increase Tmax, but it is unclear whether this would further reduce structural complexity of
tropical forests in the future.

In addition to tree height, remotely-sensed leaf traits were also related to structure near some of our
plots. Increased stratification (lower percentage of one peak) was significantly correlated (P < 0.05) with
increases in SLA (figure S9), but this was almost entirely driven by low SLA values in high elevation plots and
removing these plots removed the significant correlation (Malhi et al 2021). Along a logging gradient in
Borneo (Riutta et al 2018), less stratification as logging increased was significantly correlated with an increase
in SLA and foliar concentrations of phosphorus, similar to other studies (Baraloto et al 2012)
(Carreño-Rocabado et al 2016). However, Both et al (2019), also in Borneo, found a contrary result when
comparing SLA along the forest gradient (Both et al 2019). Furthermore, Swinfield et al (2019) used high
resolution aircraft hyperspectral data to predict SLA across the Bornean landscape (Swinfield et al 2019), but
unlike most early studies (Doughty et al 2017) did not predict SLA accurately. Overall, we have reasons for
caution for how well SLA can predict structure in tropical forests, but our abilities may improve in the future
with hyperspectral satellites which could more accurately predict leaf traits at a global scale.

The primary goal of GEDI is to improve global predictions of biomass and incorporating structure could
aid this goal. GEDI L4B was correlated (r2 = 0.12 and 0.14) with both tree height (RH 98) and structure (%
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one peak). The GEDI algorithm uses tree height (RH 98) as a metric to predict biomass, and since tree height
is correlated with structure, the similar strength of the correlations is not surprising (Duncanson et al 2022).
However, there is a question of whether structure in addition to tree height can be used to improve biomass
predictions. The dominance of one peak forests likely indicates more open upper canopy forests and Asner
and Mascaro (2014) have shown these forest types make biomass prediction more challenging (Asner and
Mascaro 2014). The plot data used to calibrate GEDI for tropical regions were not widely distributed
throughout Amazonia, especially in the regions where height and structure diverge (figure 2). Understanding
why height and structure diverge in these regions may be key towards understanding whether structure can
improve biomass predictions in the future.

Overall, in most tropical forests, the upper canopy may be more open and stratification simpler than
previously expected, and this has important implications for predicting biomass. Furthermore, our results
indicate that tropical forest canopies may be more open than previously thought which may expose animals
to greater climate change related heat stress and require modifications to their behavior (Oliveira and
Scheffers 2019, Eppley et al 2022).
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The data and code that support the findings of this study are openly available at DOI: 10.5061/dryad.
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